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Determination of Performance Characteristics of Scientific Applications on 
Blue Gene/Q 
 
C. Evangelinos, R.E. Walkup, V. Sachdeva, K.E. Jordan, H. Gahvari, I-H. Chung, M.P. Perrone, 
L. Lu, L-K. Liu, K. Magerlein 
 
The IBM®Blue Gene®/Q (BG/Q) platform presents scientists and engineers with a rich set of 
hardware features: e.g. 16-cores per chip sharing an L2-cache, a wide SIMD unit, a 5-
dimensional torus network, and hardware support for collective operations. An especially 
important feature is that the cores have 4 "hardware threads", which makes it possible to hide 
latencies and obtain a high fraction of the peak issue rate from each core. All of these hardware 
resources present some unique performance tuning opportunities on BG/Q. We provide an 
overview of several important applications and solvers and study them on BG/Q using 
performance counters and MPI profiles. We discuss how BG/Q tools help us understand the 
interaction of the application with the hardware and software layers, and provide guidance for 
optimization. Based on our analysis we discuss code improvement strategies targeting BG/Q. 
Information about how these algorithms map to the Blue Gene architecture is expected to impact 
future system design as we move to the Exascale era.  
 
1. Introduction 
 
The Blue Gene®/Q (BG/Q) platform is the next generation of the Blue Gene family of IBM 
supercomputers. It continues the tradition of low power, high density, reliability, and extreme 
scalability. Like its predecessors Blue Gene®/L (BG/L) and Blue Gene®/P (BG/P) its processor is 
based on a low power PowerPC core not intended for the enterprise market, extensively modified 
and enhanced by the addition of high performance computing (HPC)-targeted hardware features.  
 
As part of the “bringup” and early testing for BG/Q, IBM Research was involved in porting and 
optimizing several scientific and engineering codes to BG/Q from its main US-based partners 
Lawrence Livermore (LLNL) and Argonne (ANL) National Labs as well as other customers.  
Traditional programming methods, message passing interface (MPI) and OpenMP, are supported 
on BG/Q, and our experience has been that porting codes to BG/Q is normally a simple process. 
Given the enhancements in the runtime environment for BG/Q, even codes that required 
modifications to run on BG/P could more easily be setup to run on BG/Q. Optimizing for 
performance, however, is a bit different. 
  
The PowerPC A2 core in BG/Q is an in-order 64-bit core running at 1.6 GHz with Simultaneous 
Multi-Threading (SMT) capability using four hardware threads. The A2 core is a very simple 
core by current standards.  It has two execution units: XU, the integer/load/store unit and AXU, 
the floating-point unit.  When a single thread is running, the A2 core can issue at most one 
instruction per cycle.  By using two or more hardware threads, the core can issue up to two 
instructions per cycle, one from each of the two execution units.  With four hardware threads 
available on each core, there is ample opportunity for some thread to make progress if others are 
stalled.  This design has the consequence that effective use of the four hardware threads is the 
key to getting the best overall application performance. On BG/Q, the performance per-thread is 
low by design, and it is necessary to make use of a large number of threads to obtain high 
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performance.  In contrast, most current SMT-capable processors (IBM Power6/7 and Intel Core 
i3/5/7 families) have multiple execution units, and can issue more instructions per cycle, and 
operate at higher clock frequencies. The BG/Q core can provide excellent power efficiency, but 
that comes at a programming cost because a higher degree of parallelization is required to obtain 
comparable performance to systems that have faster, less power-efficient cores. 
 
The floating-point unit is designed to handle 4-wide SIMD (QPX) instructions leading to a peak 
performance of 4 x 2 x 1.6=12.8 Gflop/s per core. To obtain a high fraction of peak, at least two 
threads must be active so that both execution units can be kept busy issuing loads/stores and 
address calculations, along with multiply-adds. Each core has a dedicated 16 KB L1 D-cache (64 
byte lines) and an L1P prefetch buffer with a capacity of 32 lines (128 bytes long), with a ~24 
cycle latency. The BG/Q node has one chip with 16 A2 cores (plus one for the OS and one 
spare), and a 32 MB shared L2 cache with a latency of ~84 cycles and up to ~300 GB/s effective 
bandwidth. There is 16GB of main memory per node, with ~350 cycle latency and ~28.5 GB/s 
memory bandwidth achievable in streaming mode. BG/Q nodes are interconnected by a 5D torus 
network with a 2GB/s bandwidth on each of 20 links to neighboring nodes (as opposed to the 
combination of a 3D torus and a “collective” tree network in BG/L and BG/P). 
 
Compared to Blue Gene/P, the theoretical peak floating point speed is ~15 x more per node (4x 
cores per node, 2 x SIMD width and 1.88 x the frequency) while the sustained memory 
bandwidth is ~3 x more per node. The application performance ratio varies depending on 
resources used, but typical numbers for the LLNL and ANL set of production codes are ~8 x 
more performance per node on BG/Q relative to BG/P.  
 
The paper is organized as follows: In section 2 we present our tools for performance analysis on 
BG/Q. We then proceed in section 3 to illustrate what was learned through the use of these tools 
about several HPC applications ported to BG/Q.  In section 4 we go into a more detailed analysis 
illustrating the main challenges and remaining issues for some applications still being tuned for 
BG/Q. We summarize the performance information in section 5 and try to draw more general 
conclusions on the likely performance characteristics of existing scientific applications on BG/Q 
and the algorithmic and coding changes that may be beneficial going forward on this and future 
platforms with similar hardware attributes. 
 
2. BG/Q performance analysis 
 
2.1 MPI profiling on BG/Q 
 
MPI (Message Passing Interface) provides a profiling interface which makes it possible to 
instrument MPI routines, and obtain detailed information about communication. Our internal 
IBM Research MPI profiling tool (libmpitrace/libmpihpm) [1] for BG/Q outputs performance 
summary data at the end of application execution, when MPI_Finalize() is called. In that 
sense it is quite similar to the mpiP [2], IPM [3], FPMPI [4] , MPInside [5], and other 
performance tools. “Mpitrace” allows the option of collecting a detailed trace for MPI events 
(usually provided by separate - higher overhead - tools). The choice of what events to monitor or 
not and how to display them is controlled via environment variables and the tool simply requires 
relinking. Additionally it provides the option of adding start and stop statements in the code for 
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fine tuning of what is being counted or traced. In our experience unless one is tracing or very 
latency sensitive, the overhead is usually small enough to allow using it in production mode. By 
default it produces an MPI summary for the processes with the least, the most and the median 
communication time as well as process 0. 
 
The libmpitrace tool for BG/Q has been designed with extreme scalability in mind and tested at > 
1 million MPI ranks.  At that scale care is required to reduce or eliminate arrays that are 
dimensioned by the number of ranks, otherwise memory utilization can limit scalability; and of 
course the number of output files must be kept to a manageable level. 
 
2.2 Hardware performance counters 
 
BG/Q has a good set of hardware counters that can provide detailed information about work 
done by the processor cores, the memory sub-system, and the network.  The BG/Q system 
software includes a BGPM layer for access to the performance monitor data.  In practice it is 
useful to provide a thin layer, called HPM, on top of BGPM that can be easily called from 
Fortran, C, or C++.  Portable interfaces like PAPI [6] are also supported but not used by our 
tools. The collection of hardware counter data was integrated with the MPI profiling software 
introduced above.  That enables MPI to be used for data reduction, so that simple derived metrics 
can be provided directly, without post-processing more primitive counter output.  On BG/Q there 
are separate counters for each hardware thread on every core, but the counters for the L2 cache 
and memory sub-system are shared across the node.  Most applications use multiple MPI 
processes on each node, and so it is convenient to use MPI to collect node-wide aggregate 
counter data for analysis. Certain predefined groups of events (selectable via an environment 
variable) can be counted to provide more user-friendly derived information like instruction 
throughput, cache-hit rates and DDR traffic. The counting starts at MPI_Init() and ends at 
MPI_Finalize() if the transparent (re-linking only) approach is chosen. Alternatively the 
user can insert (nested named) start or stop statements in the source code to also investigate 
specific code regions. 
 
2.3 Gprof and profil() on BG/Q 
 
Traditional interrupt-driven profiling is provided on BG/Q – via the gprof mechanism (-pg) or 
the profil() routine. The overhead of -pg when used during compilation can be significant, but if 
used only at link-time, the overhead is normally small. The profil() routine is included in the 
system software stack, and can be used directly or with other profiling packages.  However, for 
multi-threaded applications, the profil() routine provides data for only the master thread, while 
the –pg approach has been customized for BG/Q to support profiling for multiple threads. The 
mpitrace tool has integrated support for profil() and uses the same mechanisms employed for 
MPI and performance counter profiling to automatically present the user with profiles for the 
processes taking the most, the least and the median time as well as process 0. 
 
2.4 Performance data repository 
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In order to characterize High Performance Computing (HPC) applications and to understand the 
system usage, we have implemented a performance data repository. The modified performance 
tools such as HPM and MPI profiler inject data into this performance data repository which is 
hosted using an SQL compatible database. This allows the merging of performance data from 
various source (systems and users). This consolidated performance data repository allows us to 
perform data mining more efficiently by using queries generated via a spreadsheet or a web page 
interface. As this repository is being populated it is helping architecture designers to realize how 
codes utilize the hardware (see Figure 2); thus it is expected to facilitate co-design for next 
generation HPC systems. 
 
3. Application Performance 
 
In this section we describe results of our performance characterization for several scientific 
codes. The results are partly still in flux due to the early state of compilers, the OpenMP runtime 
and the messaging libraries. Access to fast parallel I/O was generally very limited and we have 
tried to exclude I/O from our results and analysis.  
 
3.1 LLNL Sequoia Benchmarks 
 
The LLNL Sequoia benchmark codes [7] were used regularly from the earliest stages of 
hardware availability.  The five “tier 1” benchmarks are all constructed as weak-scaling 
benchmarks that can be tested from a single process or thread out to many thousands of 
processes. 
 
3.1.1 Radiation Transport: IRS 
 
IRS [8], stands for Implicit Radiation Solver. It is a code written in C which solves the radiation 
transport equation with a flux-limited diffusion approximation with an implicit matrix solution 
for which it uses a preconditioned conjugate gradient method, and is a hybrid (MPI/OpenMP) 
code. It is run in a weak scaling mode as per the benchmark instructions. Our analysis of IRS 
showed the following main performance issues: (1) A memory access limitation in the 
rmatmult3() routine (multiplying many arrays concurrently) – the original loops had too many 
streams for the prefetch hardware to handle. The first optimization was to split the loop into a 
number of stages, to limit the number of streams.  Extra stores and loads are required in that 
approach, but the overall performance improved significantly because the hardware prefetch 
mechanism could be used. (There is a limit of about 16 streams per core with default 
parameters).  (2) Some additional performance was obtained by re-writing the code so that the 
compiler could recognize data that could be loaded once and re-used. (3) Part of the code as 
provided exhibited communication overhead scaling linearly with the number of MPI tasks; for 
large enough number of tasks this became important. This was identified using our tools and 
corrected a small constant value. The net speedup achieved by optimizing was about 2 x for 1-
rack of BG/Q. 
 
3.1.2 Radiation transport: UMT 
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UMT [9] is a deterministic multigroup 3D photon transport code for unstructured meshes also 
using mixed MPI and OpenMP. The code employs a mix of C++, C, Fortran90, and Python, and 
solves the first-order form of the steady-state Boltzmann transport equation. The benchmark 
rules required testing for both strong and weak scaling. UMT originally had just one OpenMP 
parallel region, which included the main computational routine, snswp3d. One might think that 
code generation in that routine would be the focus.  However, our analysis shows that 
performance in that section is limited by bandwidth to memory, not code generation by the 
compiler (or by hand tuning). Figure 1 shows the performance as a function of the number of 
threads per core, with and without QPX instructions generated by the compiler.  Although the 
QPX improvement is significant at one thread per core, one hits the bandwidth limit at two 
threads per core.  In contrast, code with scalar instructions continues to improve with additional 
threads, reaching nearly the same performance plateau with four threads per core.  
 
The more successful tuning strategy for UMT involved improving the OpenMP coverage so that 
as much of the code as possible could fully utilize the available hardware threads. 
 
3.1.3 Molecular Dynamics: LAMMPS 
 
LAMMPS [10] (Large-scale Atomic/Molecular Massively Parallel Simulator) is a C++ 
molecular dynamics (MD) code from Sandia that has been widely used in academia and industry. 
The code as provided uses MPI as the parallelization strategy, without threading or OpenMP 
(later versions of LAMPPS now have some OpenMP acceleration as an option).  The benchmark 
problem (classical MD EAM run in weak scaling mode) involved embedded-atom potentials, 
which have excellent locality, with nearest-neighbor communication in three dimensions.  This 
code can use all of the hardware threads on BG/Q with 64 MPI ranks on each node.  Excellent 
scaling of LAMMPS to over 1 million MPI ranks was demonstrated using this method.  At that 
scale (16 racks of BG/Q), it is best to specify a three-dimensional process grid that fits naturally 
onto the 5D torus network.  For example, the 16-rack BG/Q block has dimensions 
<A,B,C,D,E,T> of <16,8,8,8,2,64>, which can be grouped into an effective 3D topology of 
<128,128,64>.   
 
For experimental purposes, OpenMP was introduced for force-evaluation, neighbor-list, and 
coordinate/velocity updates.  This allows for a comparison between the pure MPI and hybrid 
MPI + OpenMP methods.  In Table 1 we compare the different programming methods (pure 
MPI vs. hybrid).  In this particular example (512 nodes of BG/Q), the hybrid method was about 
7% faster.  As can be seen in Table 1, there is somewhat less contention for L1 D-cache with the 
hybrid code, but overall the two approaches have very similar characteristics.  Generally 
speaking, the main motivation for the hybrid programming method is to enable access to all of 
the hardware threads in applications where that would not be possible with an MPI-only 
approach (often due to memory limitations).  In cases where both methods are workable, there is 
often a small advantage for the hybrid version. 
 
3.2 ANL applications 
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A set of ten science applications were chosen by Argonne National Labs for performance 
evaluation on BG/Q. They are all covered in a companion paper in this issue – but we describe in 
a little more detail two of them that present extra interest – the overall performance of the 
applications compared on a per-node basis to BG/P (same number of cores used or same amount 
of total memory) can be seen in Table 2 showing an improvement ranging from 6x to almost 
17x. 
 
3.2.1 Atmospheric Climate Simulations: HiRAM 
 
HIRAM stands for High-Resolution Atmosphere Model and is based upon a widely used Climate 
code (in our case employing a Cubed-Sphere Non-Hydrostatic Dynamical Core) from the 
Geophysical Fluid Dynamic Laboratory (GFDL) [11]. The particular configuration studied is the 
classical Held-Suarez [12] benchmark run in strong scaling mode. 
 
This problem uses a grid with 2560 points in each of the two dimensions, on six faces of the 
cube, for a total of about 39 million grid points, each with 32 vertical levels.  Such a high 
resolution model can make good use of a large number of processes and/or threads.  The code is 
OpenMP enabled, with most of the OpenMP constructs distributing work over the vertical layers, 
or over one of the lateral dimensions.  With one rack of BG/Q, excellent performance was 
obtained using eight MPI ranks per node, with 8 OpenMP threads per MPI rank.  Due to the 
cubed-sphere geometry, the number of MPI ranks must be a multiple of 6, not a power of two.  
However, one can choose decompositions that use almost all of the processors in a power-of-two 
BG/Q partition.  For the 1-rack job, we chose a decomposition of 6 x 44 x 31 = 8184 MPI ranks 
and 8 OpenMP threads per rank, for a total of 65472 threads.  Scaling of the main computational 
loop remained linear, with ~3% of the time spent in communication when using the full rack.  
This application can scale out much further.  A comparison with a similar job on BG/P (same 
code, same 6 x 44 x 31 MPI decomposition, but the maximum of 4 possible OpenMP threads) 
indicated a performance ratio of ~14 x for a node-to-node comparison; i.e. one rack of BG/Q 
(16K cores) was significantly faster than 8 racks of BG/P (32K cores). 
 
The cubed-sphere model has a small load imbalance due to the non-uniform decomposition of 
the grid and the underlying science.  This can be clearly seen in the MPI timing data: processes 
with the least work spend more time waiting (for the processes with the most work).  There is a 
small additional amount of work for processes that have land-points vs. ocean points.  
 
3.2.2 Computational Fluid Dynamics: DNS3D 
 
DNS3D [13] is a computational fluid dynamics (CFD) code employing direct numerical 
simulation (DNS) of Navier-Stokes equations to solve turbulent viscous flow for the idealized 
case of a periodic 3D domain. The method employed is pseudo-spectral in space and 4th order 
RK in time. The code is Fortran and MPI-only and relies on the P3DFFT [14] library for the 
parallel 3D FFTs and on FFTW or ESSL for the actual underlying 1D FFT. The 3D FFT 
approach of the P3DFTT handles the inherent scalability limitation of the usual “slab” approach 
of 3D FFT decompositions by converting to a “pencil” decomposition and relies on 
MPI_Alltoallv(). All-to-all represents a communication pattern that stresses networks and 
is challenging for most topologies. For the problem sizes (in weak scaling mode) that were 
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investigated the memory footprint per rank is small enough that one can run in a mode of using 
64 MPI tasks per node.  
 
The 5D torus network on BG/Q proved to be very successful in handling such a challenge.  For a 
20483 problem on 8192 cores (32768 MPI tasks) a speedup of 16.9 over BG/P was observed 
(more than the 15 ratio in peak flop/s).  In fact one sees that while using the same number of 
physical cores (16 per node, 512 nodes) overall DNS solver time decreases from 3421.80 s to 
2424.00 s to 1849.00 s (16, 32 and 64 MPI tasks per node) and the time per timestep drops from 
16.61s to 12.12 s to 10.33 s – all this extra performance coming “for free” from SMT.   
 
In our experience the 4-way SMT on BG/Q is very effective at hiding stalls due to data-
dependencies (pipeline stalls) and/or stalls due to waiting for the memory subsystem.   On the 
other hand, applications that have a very high memory-bandwidth requirement can hit that limit 
with one thread per core.  The hardware counters on BG/Q can identify those situations. 
 
3.3 European Applications 
 
3.3.1 Meteorology: MESO-NH 
 
MESO-NH [15] is a gridpoint limited area non-hydrostatic atmospheric meteorological model. It 
has been in development in France since the 1990s. The code has been parallelized for massive 
parallel processors (MPPs) and uses 3D fast Poisson (FFT-based) solvers for the (elliptic) 
pressure equation hence global array transposes (all-to-all based) are necessary. Also global 
reductions have to be used and are the other main collective call involved. Finally the code is 
fairly I/O dependent – this showed up in the profiles as an imbalance in MPI communications 
used to distribute input data (MESO-NH does not use parallel I/O and our I/O subsystem was 
still in its infancy and thus quite under-performing at the time). The benchmark problem was run 
in strong scaling mode. 
 
We were unable to run more than 16 MPI tasks per BG/Q node for the benchmark problem size 
of 3456x3456x128 as the minimum memory footprint was too large to support 2 MPI tasks per 
core. Hence the only way to utilize the 4 hardware threads on the BG/Q cores was to add 
OpenMP or to attempt to use asynchronous communication threads (or both). 
 
The benchmarking rules precluded code-changes but MESO-NH proved to be fairly amenable to 
automatic parallelization by the compiler.  With the auto-parallelized code, the overall runtime 
dropped from 712s to 565s on 8192 MPI processes (1 process per physical core).  Adding the use 
of asynchronous communication threads decreased the overall benchmark runtime to 538s. The 
profile of the code was fairly flat – the only “hot” spot at ~10% of runtime was a limiter of a 
variable: this evaluated an if statement for every gridpoint at every timestep and could not be 
refactored in a way that did not kill performance. Multithreading the loop however helped reduce 
the branch penalty. One can expect to do even better with manual OpenMP parallelization that 
avoids the extra overhead usually seen in autoparallelized codes. 
 
4. A Deeper Look into Applications and Algorithms 
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Having seen the performance characteristics of a variety of scientific codes on BG/Q we proceed 
to look in more depth in this section in three different codes still being tuned for BG/Q that 
represent both important current and future application areas as well as different algorithmic 
approaches to the use of HPC. ROSETTA is an example of a class of highly parallel biology 
computations that employ machines as massive high-throughput compute engines but still 
require communication to distribute work and collect results. Efficient utilization of BG/Q 
motivates reducing the number of MPI processes and introducing threading. AMG2006 is 
indicative of a very popular family of solvers based on algebraic multigrid methods and lessons 
learned for AMG2006 are expected to be of wider use regarding efficiently using multigrid on 
multicore/manycore processors as well as optimizing it for hybrid (MPI-OpenMP) use. Finally 
the revere time migration (RTM) algorithm is representative of a large class of geophysical 
elasticity problems involving very large 3D stencils of great practical use in industry. RTM 
motivates use of the hardware threads as well as SIMDization of code.  
 
 
4.1 Protein Modeling: ROSETTA 
 
ROSETTA  [16] is a library based object-oriented software suite which provides a system for 
predicting and designing protein structures, protein folding mechanisms, and protein-protein 
interactions. The library contains the various tools that ROSETTA uses, such as Atom, 
ResidueType, Residue, Conformation, Pose, ScoreFunction, ScoreType, and so forth. These 
components provide the data and services ROSETTA uses to carry out its computations. It is 
currently being ported and tuned for BG/Q as part of an ANL and IBM Research collaborative 
effort. 
 
For our purposes, we have used the executable minbench part of the ROSETTA suite. The 
execution of minbench involves 2 basic steps: energy minimization and subsequent energy 
computation. The executable minbench works on a structure for 300 seconds, and tries to go 
through as many iterations as possible of these two steps. It reports the timings as T/iterations 
where T is the time taken and the iterations is the number of iterations completed.   
 
The execution profile of minbench is thus consumed by the steps above in varying degrees based 
on the size of the input. For larger inputs, the energy minimization routine (dfpmin) takes the 
higher percentage of the time, while for smaller inputs the energy computation routines consume 
more time.  
 
ROSETTA’s calculations for the structure are embarrassingly parallel, and require no 
communication with other structures during computation. ROSETTA currently has support for 2 
partitioning policies: a master-slave policy in which the master delegates tasks to slaves upon 
request, and a partitioning policy which provides subsets of the sequences to MPI processes 
based on their respective MPI ranks. A master-slave policy has proven to not be sustainable at 
large scale, as a single master can be overloaded with managing the slaves.  To examine the 
bottleneck of the single master system, we ran minbench with 2048 slaves and 6144 jobs (64 
nodes, 64 processes per node – the maximum allowed on BG/Q, utilizing all 4 hardware threads 
for MPI processes).  In the MPI partitioning, the slave processes use MPI_Recv() for receiving 
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job ids; thus in this case, every slave process completes 3 MPI_Recv() in total.  MPI timing 
data showed that the slaves were waiting to receive data from the master a large fraction of the 
total elapsed time.  Thus, the policy of a single master is clearly a bottleneck with a high number 
of slave processes. 
 
Since minbench has a very small memory footprint, we have been able to fit 64 MPI processes 
per node on BG/Q for most inputs, except for the largest input case, where 32 tasks can fit to 
perform work on every node. Essentially, despite this being a parallel MPI code, based on the 
execution characteristics of ROSETTA, we are using BG/Q as a high-throughput engine, using 
the maximum permissible number of processes on every node. 
 
We have also collected machine-level characteristics for the inputs using the libhpm library on 
BG/Q. In Table 3 are some of the key statistics for the smallest input as we scale the number of 
tasks from 4 to 64 on a single node. As can be seen, the memory traffic increases substantially as 
we increase the tasks. This leads to a significant slowdown in performance for a given number of 
MPI tasks, as can be seen in the wallclock time for a fixed number of iterations in minbench 
shown in Table 3. However even given this slowdown, since it is less than a factor of 4 going 
from 16 to 64 processes, the highest throughput strategy is to use all 64 hardware threads as MPI 
processes. Moreover we see that at that mode of usage, we are seeing close to 50% of the 
maximum issue rate (mainly integer) from every core.  Similar behavior is seen for the largest 
input as well.   
 
Larger input cases cannot be expected to successfully employ all available hardware threads with  
MPI processes because the memory footprint grows.   In fact given the 16GB per node 
constraint, large enough input data sizes might not be able to work with more than 8 or even 4 
MPI tasks per node. It is when looking to this future set of problems that we expect threading to 
become important for ROSETTA on BG/Q. Thus the optimization strategy we are currently 
pursuing is based on using portable operating system interface (POSIX) threads instead of MPI 
processes within the node to do the energy calculation and minimization in ROSETTA. We 
expect that using threads and shared memory will allow us to employ all hardware threads in 
foreseeable cases.  Given the form of parallelism ROSETTA exhibits, we also expect better 
performance by going to a 1 MPI process, 64 POSIX threads per node mode of use. 
 
4.2 Iterative Solvers: AMG2006 
 
Algebraic multigrid (AMG) is a popular solver for large, sparse linear systems that finds use in 
many science and engineering applications. It is also part of the LLNL Sequoia benchmark suite. 
It extends the coverage of multigrid methods, which are fast linear solvers for structured grid 
problems, to unstructured grids such as finite element meshes. What makes multigrid attractive 
on HPC platforms is its ideal algorithmic scalability. When it works well, multigrid solves a 
problem with n unknowns in O(n) time, making it highly suitable for solving the larger and 
larger problems for which scientists and engineers are making use of ever larger parallel 
machines. The key principle of multigrid is that instead of doing all the computational work on 
the original “fine-grid” problem, a sequence of coarser grids is used to accelerate the overall 
solution. There are a number of different cycling strategies that visit the fine-grid and coarse-grid 
problems a varying number of times. As our first attempt to port and tune AMG2006 on BG/Q 
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(as part of a research collaboration with LLNL and UIUC), we examined the simplest such 
strategy, a V-cycle, which entails a sequential progression from finest to coarsest and then back 
to finest. An overview of multigrid in general, along with more details about AMG, can be found 
in reference [17]. 
 
AMG has scaled very well on BG/L [18] and BG/P [19] in the past, but has run into problems on 
emerging multicore cluster architectures [20]. The cause was found to be a combination of 
several performance limiting factors, from switching delays to contention between tasks for 
resources on the interconnect [21]. This showed up the most on coarse grids, where there was a 
lot more interprocess communication and far less computation than what is seen on fine grids. In 
some cases, the work on coarse grid problems with only a few unknowns per core took longer 
than the work on fine grid problems with tens of thousands of unknowns per core. 
 
This naturally raises the question of how well AMG performs on BG/Q, where the number of 
cores per node has increased to 16 from 2 on BG/L and 4 on BG/P. There is also the question of 
how AMG performs when using the multiple hardware threads per core that are available on the 
platform. A preliminary experiment, performed using AMG on a 3D 7-point Laplace model 
problem with 50 × 50 × 25 points per core (the same one considered in [21]), shows us that 
AMG’s scalability on BG/Q can be further enhanced.  Running on 16, 128 and 1024 cores gives 
us 70, 75.5 and 80.4 ms per V-cycle on BG/P; the respective times on BG/Q are 32.6, 39.0 and 
47.1ms. We varied core counts on both BG/P and BG/Q, using the best mix of MPI tasks and 
OpenMP threads per node for each case. The weak scaling results suggest room for improvement 
in the case of BG/Q with further platform-specific optimizations.   
 
A deeper story is told by the number and ideal mix of threads and processes on BG/Q. BG/P 
supported hybrid MPI/OpenMP programming, but for AMG, the best performance always 
involved running one MPI process per core also known as Virtual Node (VN) mode. BG/Q 
allows for up to 64 parallel tasks per node, which can either be all MPI processes, all OpenMP 
threads, or some mix of the two, and the best mix of threads and processes varied in the 
experiments. When running on one node (16 cores), using 64 MPI tasks resulted in the best 
performance, but for larger core counts, the performance using 32 MPI tasks per node and no 
OpenMP was better. This would indicate that the interconnect has difficulty handling accesses 
from too many MPI tasks. The bigger issue, though, is that the application is not successfully 
making use of the available parallelism, as using 32 MPI tasks and no OpenMP means that only 
half of the four hardware threads per core are being utilized effectively. 
 
Changes will thus be needed to ensure that AMG makes full use of BG/Q and scales effectively 
to it. First, since the number and ideal mix of threads and processes varies with total core count, 
running AMG will need to be coupled with some form of predictive model to ensure the best 
performance. Furthermore, since contention for internode communication reduces the ability of 
AMG to exploit the full parallelism of the machine, some form of data redistribution will also be 
necessary to reduce communication on coarse grids. Efforts are currently underway in both of 
these areas. 
 
4.3 Seismic Imaging: Reverse Time Migration (RTM) 
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Seismic imaging is a critical element of oil and gas exploration, providing detailed three-
dimensional images of the Earth’s subsurface to locate and characterize hydrocarbon reserves. 
The generation of such images, even using approximations to the true physics, is extremely 
computationally intensive.  In fact, many oil companies are now predicting that their 
computational requirements for seismic imaging will be in the exascale range by the end of the 
decade. To explore the computational requirements of seismic imaging, we have implemented on 
both BG/P and BG/Q one of the most advanced algorithms used in production exploration today, 
Reverse Time Migration.  By taking advantage of BG/Q’s new hardware features and resources, 
we have achieved a 13.4x performance speedup on node-to-node comparison over the previous 
generation BG/P. 
 
The Reverse Time Migration (RTM) algorithm [22] is known in the industry for its superior 
imaging accuracy for difficult subsurface structures like salt domes which are poorly imaged by 
other algorithms but which are very effective at trapping oil and gas. Several variants of RTM 
exist with differing degrees of approximation to reality, all of which are based on solving the 
wave equation in time and all of which use single-precision arithmetic. We implemented an 
isotropic, acoustic RTM variation that makes the simplifying assumptions that the wave velocity 
is independent of wave direction and that no energy is absorbed by the medium. The volume in 
interest is represented by a rectangular grid that is partitioned among the available Blue Gene 
nodes; MPI communication is used between each neighboring subdomain for data exchange.  
The most computationally intensive part of the RTM algorithms is the simulation of the 
propagation of 3D seismic pressure waves. To simulate these waves, we used an explicit, finite 
difference approximation on a regular 3D grid applied to the wave equation. This approximation 
gives rise to a sparse stencil along the three spatial axes, which in practice is typically selected to 
be 8th order in space (i.e., a 9 x 9 x 9 stencil) or larger. This stencil size can lead to instabilities 
that are handled by using small time steps, further increasing the computational demand of these 
methods. The stencil calculation consumes the majority of cycles in production seismic imaging, 
but fortunately is amenable to computation using SIMD. Other non-negligible operations 
required at each time step in our implementation include boundary condition handling, a 3D 
correlation calculation, and communication between nearest neighbor domain partitions. 
 
In practice, production RTM 3D model sizes vary from 5123 to 10243 or larger, with thousands 
or tens of thousands of time steps per simulation and tens or hundreds of thousands of 
simulations required for a single imaging task. However there is a constant pressure in the 
industry to grow these models to increase image resolution and to enable deeper imaging. 
 
For performance evaluation, we used a model with 10243 grid points and only 100 time 
iterations, since runtime scales almost linearly in the number of time steps. The tests were run on 
a 64-node block on both BG/Q and BG/P systems.  The tests on BG/P used 1, 2, and 4 cores (its 
maximum) per node while the tests on BG/Q used 1, 2, up to 64 ranks/node. The results show 
that RTM on BG/Q is 2.6 x faster on up to 4 ranks/node, 5 x faster for 8, 10.1 x for 16 and 12.6 x 
for 32. At 64 ranks/node it enjoys a 13.4 x node-to-node speedup over BG/P. 
 
We have also collected machine-level characteristics for the inputs using libmpihpm on BG/Q. In 
Table 4 are some of the key statistics for the case of strong scaling on RTM as we scale the 
number of tasks from 1 to 64 on a single node. We observe optimal performance at about 32 
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ranks/node. In the case of strong scaling, the size of each subdomain decreases and thus the data 
3 locality increases as we increase the number of tasks. We can see the changes in L1, L1P , L2 
and DDR memory traffic from 4 to 16 ranks/node and how these metrics then change in a 
different direction when the ranks/node go from 16 to 64. We also observed the significant 
improvement in overall IPC above 16 ranks/core.  All these lead to performance improvements 
as well as excellent scaling properties. As we expected, being able to use multiple threads per 
node helps us a great deal in the RTM workload. We have not yet investigated the 
communication time carefully; we believe that there is scope for considerable improvement 
there, and as we increase the number of ranks per node (therefore the total number of MPI ranks 
since this experiment used a fixed 64 nodes) the communication becomes more costly. We are 
therefore optimistic that we can improve the scaling of this code further.   
 
5. Analysis and Conclusions 
 
The central observation from the analysis of the various applications described in section 3 (as 
well as others which we could not cover due to length limitations) is that the efficient use of the 
four hardware threads available for each BG/Q core is key to getting good performance. By 
using all four hardware threads for computation, one can often get a speed-up of ~2x (and more 
in some cases) relative to using a single thread per core.  With four threads working, some thread 
can often make progress when another thread is stalled, resulting in good overall utilization of 
the core.  We see instruction throughputs in the range of 40-60% of the theoretical limit for many 
applications.  Although the instruction throughput per core is high, the performance per thread is 
low.  One must use a very large number of threads (or processes) to obtain overall high 
performance on BG/Q.  Speedup can be limited when there is contention among the threads for 
L1 D-cache, L1P buffer, or when a node-wide resource limit (such as memory bandwidth) is 
reached. Using at least two of the hardware threads per core is something that most codes 
running on BG/Q should attempt to do; three or four hardware threads is normally better. 
 
In order to utilize the extra hardware threads one has the option of using more MPI processes or 
using thread-based parallelism (usually by coding in OpenMP – or even using the 
autoparallelizer – though POSIX threads can also be pursued in more task-based approaches – 
such as ROSETTA). The hybrid approach can help reduce contention for network resources and 
intranode memory/L2 bandwidth.  It offers flexibility since one can adjust the mix of MPI 
process and threads to optimize performance and to make best use of the available memory. 
BG/Q has many features to support effective threading, with low overhead atomic operations and 
the ability for fast thread wake-up, etc.. Hence, we recommend a hybrid programming strategy 
for many applications. 
 
SIMD utilization is complex issue.  The best use of SIMD instructions has been in level-3 BLAS 
routines.  Alignment constraints and the complexity of handling misaligned data often limit 
automatic SIMDization by the compiler.  In addition, memory bandwidth can easily be saturated 
with scalar load/store instructions without the need for quad-word loads or stores.  We suggest 
that end users focus on effective threading first, and then consider the potential for SIMD 
instructions, rather than focusing on single-thread performance first, and then adding additional 
threads. 
 



 13 

On the communication front we have found that the 5D torus of BG/Q provides strong all-to-all 
performance for those codes that require it and very nice boundary (“halo”) exchange.  For 
regular Cartesian topologies, boundary exchange can benefit from a specific mapping of the 
ranks to the underlying hardware topology, something that is easier to accomplish on the 5D 
torus as it allows several embedded 3D mappings. The 5D interconnect helps keep the maximum 
number of hops in any dimension fairly small, even for rather large blocks (16 racks) of BG/Q.    
 
In conclusion our study of scientific applications on BG/Q shows that they can attain a high 
percentage of their performance potential. As Figure 2 shows, most scientific applications on 
BG/Q (with the notable exception of those dominated by dense linear algebra operations on very 
large matrices such as Linpack) have an instruction mix that contains a very significant fraction 
of integer instructions (address calculations, load/stores, branches and other more involved book-
keeping and logic) and are more likely to stress the integer pipeline – this is in line with 
independent findings [23]. In our experience so far the most useful tool for increasing 
performance is the use of the SMT capability of BG/Q, either by assigning multiple MPI tasks 
per core or by Hybrid (MPI/OpenMP or Pthreads) programming. 
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Figures and tables 
 

Figure 1: UMT Figure Of Merit (FOM) values for the Sequoia benchmark as a function of the 
number of hardware threads used and whether QPX was employed or not. 
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Metrics 1 

thread 
/core 
MPI 

2 
threads 
/core 
MPI 

4 threads 
/core 
MPI 

1 thread 
/core 
Hybrid 

2 threads 
/core 
Hybrid 

4 threads 
/core 
Hybrid 
only 

Weighted Gflop/s per 
node	
  

2.543 3.922 5.729 2.456 4.015 6.077 

Relative speedup	
   1.000 1.541 2.229 1.000 1.630 2.458 
IPC per core	
   0.230 0.356 0.554 0.234  0.372 0.567 
% Max Issue Rate	
   22.99 25.38 40.41 23.40 26.56 40.68 
Relative total instruction 
count	
  

1.000 1.006 1.071 1.000 0.973 0.986 

Relative FPU instruction 
count	
  

0.290 0.290 0.290 0.277 0.277 0.279 

L1 D-cache hit %	
   93.10 88.77 84.22 93.09 90.40 87.95 
L1P buffer hit %	
   0.84 0.85 0.59 0.84 1.11 1.22 
L2 cache hit %	
   5.87 10.07 14.77 5.57  7.98 10.29 
DDR traffic %	
   0.19 0.31 0.42 0.51 0.52 0.54 
DDR loads 
(bytes/cycle/node)	
  

0.61 1.16 2.17 1.05 1.57 2.68 

DDR stores 
(bytes/cycle/node)	
  

0.17 0.33 0.61 0.44 0.77 1.32 

DDR total 
(bytes/cycle/node)	
  

0.78 1.49 2.78 1.49 2.35  4.00 

Table 1: Performance characteristics for LAMMPS 
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Application Q/P ratio comments 
DNS3D 16.9 2048^3 problem, 8K cores, 64 ranks/node 
FLASH 5.9 rtflame, 2K cores, 64 ranks/node, no MPI-IO 
GFMC 10.5 c12-test, 2K cores, 8 ranks/node, some QPX 
GPAW 8.5 Using early ESSL libraries, 32 ranks/node 
GTC 11.2 M0180 problem, 2K cores, 16 ranks/node, 4thds 
GFDL 14.2 16K cores, 8 ranks/node, 8 thds 
LS3DF 8.1 Using GPFS ; performance sensitive to I/O 
MILC 6.1 32^3 x 64 problem, 2K cores, 64 ranks/node, no QPX 
NAMD 8.5 atpase, 2K cores, 32 ranks/node, no code tuning 
NEK 7.4 medium case, 2K cores, 32 ranks/node, some QPX 

Table 2: Relative speedup per node (peak scaling is ~15x per node) for Mira SoW 
applications. 
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Proc
esses
/Nod
e 

FPU 
Instr 
% 

FXU 
Instr 
% 

Weighted 
Gflops 
per node 

% 
Max 
Issue 
Rate 

L1 
Cache 
hit rate 

L2 
Cach
e Hit 
Rate 

DDR
 % 

Ld 
(bytes
/cycle
) 

St 
(bytes
/cycle
) 

Total 
(bytes
/cycle
) 

Time 
for 200 
iteration
s 

4 16.17 83.83 0.293 24.41 92.29 7.71 0 .007 .001 .009 1.92 
8 15.23 84.77 0.544 24.08 92.73 7.27 0 .193 .012 .205 1.99 
16 14.43 85.57 .885 20.69 93.17 5.98 0.85 2.28 .19 2.48 2.42 
32 12.38 87.62 1.32 31.48 93.04 5.72 1.25 5.28 .38 5.66 3.01 
64 11.41 88.59 1.83 47.62 91.72 7.14 1.13 8.97 .59 9.57 4.18	
  

   Table 3: Performance characteristics for ROSETTA (20.pdb, small input case). 
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Processes/Node 1 2 4 8 16 32 64 
FPU Instr % 51.77 51.45 50.60 41.99 40.98 38.14 30.02 
FXU Instr % 48.23 48.55 49.40 58.01 59.02 61.86 69.98 
Intr/Cycle per Core 0.3272 0.3220 0.3296 0.3929 0.3843 0.5047 0.6325 
%Max Issue Rate 32.72 32.20 32.96 39.29 38.43 31.22 44.26 
Total Weighted 
Gflops/Node 

1.383 2.702 5.427 10.735 20.949 25.056 24.648 

L1 Cache Hit Rate  82.84 82.71 83.71 88.00 88.02 84.94 83.36 
L1 P Buffer Hit Rate  9.77 9.82 9.92 10.79 10.70 6.30 2.83 
L2 Cache Hit Rate  6.87 6.89 5.72 0.63 0.66 7.54 11.94 
DDR % 0.53 0.58 0.65 0.58 0.62 1.22 1.87 
LD (Byte/Cycle) 0.263 0.529 1.132 2.529 5.053 6.517 7.435 
ST (Byte/Cycle) 0.100 0.196 0.407 0.957 1.956 2.535 3.085 
Total (Byte/Cycle) 0.362 0.725 1.539 3.486 7.009 9.052 10.52 
Total Run Time (Less 
Init and Final I/O) 

111.33 56.77 28.4 14.38 7.52 6.02 5.68 

Node-to-Node 
Speedup over BGP 

2.6 2.6 2.7 5.3 10.1 12.6 13.4 

   Table 4: Performance characteristics for RTM. 
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Figure 2: Applications can get a good fraction of the maximum issue rate out of every core, as 
long as multiple hardware threads are used effectively : average is ~45% max IPC. 
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passed away in 2012. 
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